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Abstract-The coupled nonlinear pitch-bending response of a free-free beam in a circular orbit,
when the beam is subjected to a periodic external excitation, is analysed. The nonlinearities present
in the differential equations of motion are due to defonnation of the beam (i.e. curvature and inertia
nonlinearities) and to the gravity-gradient moments. Perturbation methods are used to analyse the
motion. Several resonant motions exhibited by the system ~.re analysed in detail, namely, harmonic
resonances when the frequency of the external excitation, n, is either near the natural frequency of
the flexural or of the pitch motion, and a superharmonic resonance when n is near one half of the
natural frequency for the pitch motion. The latter two resonances are associated with very low
excitation frequencies.

INTRODUCTION

The nonlinear differential equations governing the coupled flexural-pitching motions of a
beam subjected to the gravity-gradient moments due to a central attracting massive body
were formulated by Crespo da Silva and Zaretzky (1993). The beam may also be subjected
to external forces other than those due to the gravity-gradient. The equations developed by
the authors (Crespo da Silva and Zaretzky, 1993) contain the effect of all the geometric
nonlinearities in the system. In order to be able to investigate the motion by analytical
techniques, the full nonlinear differential equations of motion were also expanded for
"moderate" motions to contain polynomial nonlinearities in terms of the dependent vari­
ables. For this, a circular orbit was considered in Crespo da Silva and Zaretzky (1993), and
all the nonlinearities up to third-order in a bookkeeping parameter e, which is introduced
only to keep track of orders of smallness, were retained in the resulting integro-partial
differential equations. Galerkin's procedure was subsequently applied to the latter equations
using the eigenmodes for the orbiting beam as the basis for the modal reduction.

In this paper, the coupled nonlinear flexural-pitching motions of a free-free beam in
circular orbit are investigated. For this, eqns (38) and (40) in Crespo da Silva and Zaretzky
(1993) are used for the analysis. As indicated above, the 0(e 3

) nonlinearities contained in
those equations include those due to deformation of the beam, which consist of inertia and
curvature nonlinearities. A uniform beam with constant distributed properties along its
span is considered in the present analysis.

ANALYSIS OF THE MOTION

The system considered here consists of a free-free homogeneous beam of length Land
constant specific mass m Kg m - I, and stiffness Dc N m 2

, whose center of mass C is in a
circular orbit around a center of attraction E. As shown in Fig. I, the motion is described
in terms of the elastic deformation v(s, t) (normalized by the length of the beam) and of
the pitch angle (}(t) between the "local vertical" and a principal axis of the deformed beam.
The quantities sand t are, respectively, arc-length along the beam, normalized by L, and
normalized time. The variables and nomenclature used here are the same as those used by
Crespo da Silva and Zaretzky (1993). Let the beam be subjected to a distributed periodic
force F~(s, t) = E~(s) cos (Ot) applied along the ~ direction shown in Fig. 1. With v(s, t)
approximated as v(s, t) = F(s)vt(t), and dots used to denote differentiation with respect to
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Fig. I. Free-free beam in circular orbit.

normalized time t, the: 0(e 3
) normalized diffetential equations of motion, obtained directly

from eqns (38) and (40) in Crespo da Silva and Zaretzky (1993), are

Vt+CVt+W2Vt+(P,-1)(2we+O)tlv,-3ru;(Pt + 1)t'Fv{

+ /32V{(V;)" + /33 V{3 =[., cos (Ot) +v;J.,~ cos (Ot), (I)

0'+ 3w;(}- 2w;(J3 - 12/3, (v; (0'+ 3w;O) + (we +8)(v;),J + 12(we +O)vn

- 36w;V{2() = /e cos (Ot) +v{2fo~ cos (Ot). (2)

The full nonlinear differential equations ofmotion were expanded so that perturbation
methods can be used to analyse the motion, In eqns (I) and (2), C is a structural damping
coefficient, normalized by L'l/JmD" w is the undamped natural frequency for the flexural
motion. and We is the angular s~ed of the circular orbit of the beam's mass center, both
normalized by the quantity L2Jm/D,. The quantities /3 J, P2 and P3 are Galerkin coefficients
defined in Crespo da Silva and Zaretzky (1993), The eigenfunction F(s) and the natural
frequency w are obtained numerically by solving the following differential equation iteratively
(Crespo da Silva et ai" 1991) with the boundary condition reO) =F'''(O) =r(l) =F"'(I) =0:

(3)

The values of the constants w, /3 J, /32 and /33' for the first mode, are given in Table 1
for several values of We' Note that for 0 < We ~ I the values of the constants shown are
within 1% of their values for the limiting case We = 0 (which corresponds to a free-free
beam that is not in orbit, as found in classical structural mechanics textbooks). These
numerical values are used later in this paper to generate a number of results to illustrate
the coupled flexural-pitching motion of the orbiting beam. It is of interest to notice that for
a 100 m long aluminum hollow rectangular (or circular) beam with small wall thickness and
with E = 73 X 109 N m- 2

, p = 2.77 g cm- 3 (AL2024-T4) and cross-sectional dimensions of
29 x 29 cm (or 29 cm in diameter for the hollow circular cross-section) one obtains We ~ 0.02
for a shallow Earth orbit whose orbital period is approximately 86.4 min. The value of We
becomes 100 times larger if the beam's length is increased to 1000 m. As indicated in Table

Table I. Values of W, 13" 132 and 133 for the first mode of a beam in
circular orbit

We W PI P2 P,

0 22.373 3.0498 61.2 20,581
0.02 22.373 3.0498 61.2 20,581
I 22.577 3.0496 61.2 20,689
5 27.03 3.0463 61.208 23,306
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1, for small values of We' the values obtained for wand for the constants 13h 132 and 133, are
essentially the same as those for the nonorbiting beam.

The quantities lv, Iv~, f8 and f8~ that appear in eqns (1) and (2) are defined by eqns
(4a-d) given below. The quantity Kis) that appears in eqn (4d) is defined as

Iv = f F(s)E~(s) ds,

Iv~ = f F(S{F"(s)fF'(s)E~(s)ds+ ~F'2(S)E~(S)JdS,

16 = 12f (s-!)E~(s)ds,

f8~ = 12f [K2(s) +F(s)F'(s) - ~(s- ~)F'2(S)]E~(s) ds.

(4a)

(4b)

(4c)

(4d)

Table 2 shows the corresponding values oflv, 1117/' 10 and I~ for several illustrative functions
E~(s), with F(s) equal to the eigenfunction for the first bending mode and 0 ~ We ~ 1. All
the values equal to 0 or 1 in that table were calculated analytically while the other values
were determined by evaluating eqns (4a-d) numerically.

Equations (1) and (2) exhibit a number of resonance conditions involving the natural
frequencies wand Wo = J3we , and the frequency n ofthe external excitation. These include
the internal resonances Wo :::::: wand Wo :::::: 2w. However, as indicated in Crespo da Silva and
Zaretzky (1993), and illustrated in Table 1, these internal resonances are not physically
possible due to the fact that w > Wo, Here, the harmonic nonlinear resonant responses when
the frequency ofthe external excitation, n, is either near w or near wo, and the superharmonic
resonance where n is near wol2, are investigated in detail.

To analyse the coupled motions governed by eqns (1) and (2), we introduce an arbitrary
small parameter e that is only used to keep track of the different orders of approximation.
An approximate solution to the equations of motion is sought in terms of a power series
in e. The method ofmultiple time scales (Nayfeh and Mook, 1989) will be used to generate
solutions that are valid for arbitrarily large values of time. For the 0(e 3

) differential
equations, the time scales to = t, t l = et and t2= e2t are needed. The generalized coordinates
vt(t) and (}(t) are expressed as

Vt(to, t h t2; e) = eVtl (to, t h t2)+e2vt2(tO, t h t2)+e3vt3(tO, t h t2)+.. " (Sa)

{}(to, t h t2; e) = e{}1 (to, t h t2) +e2{}2(to, t h t2) +e3{}3(to, t h t2)+.. . (Sb)

and the structural damping coefficient c is treated as a small quantity and transferred out
of the O(e) equation by letting

Table 2. Values off". f"•• fB and 180 for 0 ~ Wc ~ I and w for the first bending
mode

E.(s) f" I.., fB 180
F(s) I 44.96 0 6.07 x 10- 7 ~ 0

I 0 -54.34 0 ~O

s-! 0 -12.3 I -37.9
(S_-!)2 -0.07427 -7.87 0 ~O

S2 -0.07427 -33.76 I -37.9
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(5c)

From the chain rule of differentiation, the time derivatives in eqns (1) and (2) are
transformed as d( )/dt = (do+ed l+e2d2+·· .)(), and d2( )/dt2 = (d6+2edodl +e2(df+
2dod2)+ ...)(), where d7() = on( )/0('.

In order to analyse the different resonant motions without losing the effect of the
parametric excitation terms that appear on the right-hand sides of eqns (I) and (2), the
quantities f,,, j~~, fo and fe~ will be treated as if they were independent of each other. For
the primary resonance when the frequency of the external excitation, 0, is near the natural
frequency w, for example, the excitation I" cos (Ot) is taken out of the 0(1:) approximation
by letting f,. = 1:'1,,3 while all the other excitation terms are treated as 0(1:) in the analysis
of this case.

SUPERHARMONIC RESONANCE WITH n NEAR ./3w,/2

Since the excitation frequency in this case is away from both wand J3wc , the forcing
functions Iv cos (Ot) and fo cos (Ot) in eqns (l) and (2) do not yield secular terms at 0(1:)
and, therefore, are treated as O(e) quantities in the perturbation analysis. For this case we
then write

(6)

By substituting eqns (5a-e) and (6) into the differential equations of motion, eqns (1) and
(2), the following linear uncoupled partial differential equations are obtained at each level
of approximation:

d6Vr, +W2VIl = .r." cos (Oto),

d68 1 +3w';8, =Io,cos(Oto);

d6V,2+w2Vr2 = -2dod,vll-2w';(fi\-I)v
"

d08],

d68 2+3w';82 = -2dod[8, + 12w';({3I- I)do(v ,2d;

(7a)

(7b)

(8a)

(8b)

d6v,3+ W2Vt 3 = - d fVIl - 2 do d 2vIl - 2 do d \VI 2- ('2 dOVIl - {33 Vi\
- 2wc (f3 1 - l)[v, 1(d 082+d I 8 I) + V l 2 d 08d - (P, - l)v'l (d 08d 2

+ 3w';(P, + l)v, 18f - P2Vll d6(v t
2,) + v;tf;,~ I cos (Oto), (9a)

d68 3+3w';83 = -df8j-2dod281-2dod,82+ 12wc (PI-I)[d,(v;,)+2d o(vtl v'2)]

+ 2w';8f + 12{J 1[v;, (d68, + 3w';8 ,) + (d 08 ,) dov;l]

-12do(v,2, do8,) + 36w';V,218 1 +v;tfo~, cos (Ot o). (9b)

The solution to the O(e) differential equations is given by eqns (lOa, b) below:

(lOa)

(lOb)

After substituting the above solutions into eqns (8a, b), and defining a detuning WI

and a quantity y(t" t 2) as
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j30Jc0= -2-(1 +1>0'\),

y(t .. t 2) = j3OJCO'lt l -Be(t .. t 2),
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(lla)

(lIb)

the following conditions for elimination of secular tenns [eqns (12a, b, c)] and particular
solutions for Vt 2 and O2 [eqns (13a, b)] are obtained at the 0(1)2) level:

(l2a)

(12b)

(12c)

(l3a)

r.:; 2 {sin(tPv+tPe) sin (tPv-tPe) }
V t 2 = V 3<PI-I)OJcAvAe OJ 2_(OJ+J3OJc)2 - OJ2_(OJ-J3OJc)2

+ (!JI -1)OJcOAvfel {sin (tPv+Oto) _ sin (tPv-Oto)}
3OJ;-02 w 2_(0+W)2 w 2_(0-W)2

j3(!JI-I)W;AeJ.,l{ sin (tPe+Oto) sin (tPe-Oto) }
+ W2_02 w 2_(J3wc+O)2 + w 2_(J3wc-O)2

(!J I - I )wc0J., tiel .
+ (w 2_02)(3w;_02)sm20to,

__ fwA.sin2tPv J.,\sin(tPv+Oto) J.,\Sin(tP.-Oto)}
O2 - I2OJc(l !J1)Av t3w;-4ro2 + (w-O)[3w;_(W+O)2] + (w+O)[3w;_(OJ-O)2] .

(13b)

At the 0(e 3
) level, we now find that one of the conditions for elimination of the secular

tenns is obtained as

(14)

Therefore, the first of eqns (12) and (14) disclose that the equilibrium solution for the
bending motion corresponds to Au = 0 and that this equilibrium is asymptotically stable.
Thus, except for small higher hannonics, the bending motion is essentially given by the
linear solution with an amplitude proportional to the excitation strength eJ., I as indicated
byeqn (lOa) . For convenience in presentation, we will set Au = 0 in the additional conditions
for elimination of secular tenns at the 0(8 3

) level. Such conditions are obtained as shown
in eqns (15a, b) below:

(15a)

(15b)
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By combining eqns (12) and (15), the following ordinary differential equations are
finally obtained for the amplitude Aoand phase y of the O(e) solution for the pitch motion:

(16a)

2 ;;3 A'/ 6 (eO'I) 2' 2{ [Ai 16 (10))2J }y .JWe oY We = eO'IAo+e(X1 1- 2 lUI sm y+e 3Ao 2 + 8I w; +(X2Aof!~I'

(16b)

where

12(1- PI)O 6(1- PI)
(XI = (W2_02)2We ~ (w 2 -3w;/4)2' (l7a)

(l7b)

In eqns (17a, b), 0 ~ .)3we/2. For the first bending mode, one obtains (X) ~ - 8.2 x 10- s
and (X2~ l.4xlO- 4 when O~we~ 1, and (X) ~ -4.2xlO- s and (X2~9.5xlO-s when
We = 5. The value of (X2 is also indicated in eqn (l5b). The following amplitude-frequency
relationship for the steady-state motion (i.e. Ao = constant B, Aoe and y = con­
stant ~ Ye = n/2 and -n/2) is readily obtained from eqns (l6a, b):

(18)

The amplitude-frequency relationship that characterizes the superharmonic pitch
motion is shown in Fig. 2 for 0 ~ We ~ 1, eful/(w2_02) = 0.02 (~ 10/22.3732) and the two
values of eledw; indicated in that figure.

As indicated by eqns (lOb) and (lla, b), the pitch motion for this case consists of an
oscillation with amplitude equal to 4efed(9w;), and frequency 0, superimposed on an
oscillation with amplitude eAoe and frequency equal to 20. The amplitude eAee of the
component with frequency 20 depends on the nonlinearities and is determined by eqn (18).

0.4 -r--:-~...--~---------""

0.3

.
";5~ 0.2

-- stable
- - - - unstable

0.0 +--..-......,-.......- .......- .......-r--~--i
~.~ ~.~ ~.02 0.00 o.~

EO:-~ -1,- J3 we

Fig. 2. Amplitude-frequency pitch response for n near j3wJ2, with 0 ,,;;; We ,,;;; I (00 ;:::: 22.373) and
Ef..,/(W2_3w~/4)= 0.02 (;::::10/22.373 2

).
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o 12 24 38 48

w,t/(21r) = number of orbits

Fig. 3. Numerical in1egration of eqns (I) and (2) fodl near j3wJ2, with w, = 0.02 (w = 22.373),
8U, = -0.01, £2C2 = 0.1, v,(O) = 0.02, v,(O) = 0, and E. = IOF(s)+kw;(s-I/2).

The component with frequency n is zero for excitations with 19 = O. Figure 3 shows the
undamped pitch motion obtained from the numerical integration of eqns (I) and (2) for
We = 0.02 (w = 22.373), S2C2 = 0.1, sO', = -0.01 and the excitation parameters cor­
responding to E~(s) = IOF(s)+kw;(s-I/2) so that Iv = 10,19 = kw;, 1",,= 449.6-12.3
kw; and I~ = -37.9kw; (see Table 2). The response for We = I (w = 22.577) is virtually
the same as that shown in Fig. 3, which was generated with We = 0.02. The initial conditions
for v,(t) used in the numerical integration were v,(O) = 0.01 and v,(O) = 0, which were
chosen to correspond to the O(s) part of v,(t) given by eqn (lOa) with At = O. The upper
part of Fig. 3 was obtained with k = f9/w; = 0.3, and the initial £onditions 0(0) = 0.13 and
tJ(O) = 0.28we (which correspond to point PI in Fig. 2). This undamped response just
illustrates the superposition of the two frequency components in Ol(t) given by eqn (lOb).
The lower portion of Fig. 3 was obtained with 10 = eJo, = 0 and the initial conditions
0(0) = tJ(O) = 0 (which do not correspond to the steady-state response represented by point
P2 in Fig. 3). The slow modulation exhibited by that response is a result of thepitch motion
being undamped and being started with initial conditions that do not correspond to the
steady-state value of sA 9 determined from eqn (18) (and represented by the curve for
SJoI = 0 in Fig. 3). The pitch motion displayed in the lower portion of Fig. 3 repeats itself
as time increases. Its amplitude, sA 9 , and phase y, are governed by the differential equations
(l6a) and (16b). If the system had pitch damping, the pitch motion started with the initial
conditions given above would have been, for 10 = 0, a steady motion whose amplitude
would correspond to point P 2 in Fig. 3. As for the steady-state bending motion, except
for the small higher harmonics, it consists of an oscillation of amplitude
slv,/(w2 -3w;/4) ~ 0.02 and frequency n.

PRIMARY RESONANCE WITH n NEAR w

To analyse this case we let

(19)

The solutions to the O(s) differential equations for this case are obtained as V,I = Av(t" t 2)

cos [wto+Bv(t" t2)] ~ Avcos q,v, and 0, as shown in eqn (lOb) with n = w in that equation.
The conditions for elimination of secular terms at the 0(£2) level now become:
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(20)

The solutions for Vt 2 and (}2 are now obtained as shown in eqns (2Ia, b) given below. For
later convenience, the homogeneous solution is included in the expression for (}z in order
to transfer the initial conditions for the pitch motion to the O(e) approximation, thus
making (}zCt = 0) = (}2(t = 0) = 0:

(2Ia)

(21 b)

In eqn (2Ib), K = 12(f3l-I)wewj(4wZ-3w;) and C is a constant. For 0 ~ We ~ lone
obtains K ~ 0.274we for the first mode.

To express the nearness of the excitation frequency to the bending natural frequency,
a detuning parameter eZav is now introduced as

(22)

Substitution of the solution to the O(e) and 0(c 2
) equations into the 0(c 3

) differential
equations, eqns (9a, b), yields a number of terms with frequencies ("measured" in the time
scale to) equal to the natural frequencies of the system. In order to obtain a solution that
is uniformly valid as t ..... 00, the coefficients of such resonant terms are equated to zero.
This yields four differential equations for the variables Av(t2), Bv(t2), AO(t2) and Bo(tz).
By defining a quantity yv(tz) as

(23)

the following conditions for elimination of secular terms are obtained from eqns (9a, b) :

1 [(f3l- I )W
Z
+3(f3l+ I)W; -(13 _1)2 2J Af2 . 2 =0- 2 2 2 1 We v 01 SIn Yv ,(w -3we ) 4

y

0.001(0';; W,';; I), 8.04 x 1O-4(w, = 5)

1 [(f3l- I)W
2
+3(f3l+ I)W; -(13 _1)2 zJ A f2 2

+ (w 2_3w;)Z 4 1 We v 01 cos Yv

'--------------,yr--------~I

0.001(0';; W,';; 1), 8.04 x 1O-4(w, = 5)

____~__ [(f3l- I)W
Z
-3(f3l + I)w;. _ 2(f3l-1)2W ;JA f2 = 0

(W Z _3W;)2 2 3 v 01 ,

'-----------yr---------I

0.002(0';; w, ,;; I), 0.0013(w, = 5)

(24a)

(24b)

Ao = constant, (24c)
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The value of Ao is determined by the initial conditions of the motion.
From the chain rule of differentiation, the time derivative of the quantities Av, Yv, Ao

and Bo are obtained as Ii = dcx/dt = e d 1cx+e 2 d 2cx+'" = e2 d 2cx+'" (cx = Av, Yv, Ao, Bo).
Since these quantities do not depend on the time scale t I the differential equations for them
are of the same form as eqns (24a-d). Those differential equations admit the equilibrium
solution Av = constant ~ Ave and Yv = constant ~ Yve' An equilibrium solution to eqns
(24a, b) corresponds to a steady-state periodic solution for the bending motion Vtl(t). Since
the terms that are proportional to I J1 in those equations are each multiplied by a very small
coefficient, their contribution to the equilibrium solution is very small. If it were not for the
small effect of the parametric excitation term in eqns (24a, b), i.e. the terms proportional
to Iv~ I A;, those equations could also have been obtained by a simpler perturbation analysis
by letting E~ = 0(e3) (i.e. with Iv = e3lv3 and 10 = eY03)' The small effect of the parametric
excitation would have been lost in such analysis.

The amplitude-frequency relationship for the steady-state bending response of the
beam is obtained by solving eqns (24a, b) numerically. If 1v~IAv~/4«lv3, the amplitude­
frequency relationship for the harmonic response when n is near w is essentially given as
shown in eqn (25) below:

v
~3w~(0 ~ w, ~ 1), 80.53(w, = 5)

'-------~v~-------'

~ 1.5 X 104(0 ~ w, ~ 1), 26,506(w, = 5)

}

2 (1)22 JV3

Ave ~ Ave . (25)

The values of the coefficients of Ai and Av~ for the first mode, are indicated in eqn (25).
Since the value of the coefficient of Av~ is much higher than that for the coefficient of Ai,
the amplitude-frequency response for the directly excited bending motion is essentially the
same as the classical response of a Duffing oscillator with a softening nonlinearity. The
small 1v~IA;' and Ave/JI terms in eqns (24a, b) cause a small change in the response given
byeqn (25) for the higher values ofAve- Figure 4 shows the amplitude-frequency dependence
for the bending response for e2c2 = 0.05, Wc = 1, w = 22.577, and the two values of e3lv3
indicated in the figure. The result shown in Fig. 4 was obtained by solving eqns (24a) and
(24b) numerically with Av = Ave and Y = Yeo The amplitude-frequency response curves for
o~ W c ~ 1 are essentially indistinguishable from those shown in Fig. 4, while those for

0.018,-"<7""""""---------__....

0.036

eA,.
0.021

0.012

-- stable
- - - - unstable

o-F==r==r==:::::'--,.--':;:::::~
-0.01 -0.03 -0.02 -0.01 0.00 0.01 0.02

r! (J, = ~-1

Fig. 4. Amplitude-frequency bending response forn near w, withw, = I,w = 22.577 (orO .s;; w,.s;; I)
and e2c2 = 0.05.

$AS 3Ch17-C
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higher values of We are similar to those shown in that figure. The maximum amplitude of
the bending response determined from eqn (25) is equal to eYv3/(we2c2)' The value of the
maximum amplitude (and, thus, of the frequency where the jump phenomenon occurs) is
slightly affected by the small terms discussed above. By decreasing the value of the strength
of the excitation, eYv3, one can "shrink" the plots shown in that figure and eventually
eliminate the jump phenomenon so that the response more closely resembles the linear
response. The points marked with a cross in that figure represent the result of the numerical
integration of eqns (1) and (2) with the values of Jr.i' j;,ry and lory corresponding to
Ery(s) = 0.12F(s) (see Table 2).

The steady-state v-motion for the case considered in this section is essentially an
oscillation with frequency n given as v = eAve cos (nt-Yve) +0(e 2

), with Ave determined
from eqns (24a, b), or from Fig. 4 for the values of the parameters shown in that figure. In
contrast, the undamped O-motion depends on initial conditions and on the v-motion. After
the v-motion reaches its steady state, the O-motion is given as

(26)

with rPo = wt t + Boo, where Boo is a constant and the frequency wt is determined as

The 0(e 2
) part of the pitch motion given by eqn (26) consists of a component with

frequency 2n, whose amplitude is proportional to the square of the amplitude of the steady­
state bending motion, and a component with frequency wt, whose amplitude is equal to
e2C. By imposing the condition O2(0) = fiiO) = 0, the constant e2C is obtained as

(28)

where Vo = V,(O) and Vo = v,(O). Thus, the pitch motion depends not only on the steady­
state amplitude of the bending motion, but also on the initial conditions for the bending
and pitch motions of the beam. For the special case when Ao = 0, for example, which
corresponds to 0(0) = fiCO) = 0, the resulting pitch motion depends on the bending motion
only. If, in addition to having Ao = 0, the bending motion is started with v,(O) = 0, the
resulting pitch motion is given as

For the cases when 2wv?(0)/(j3we) » (eA ve )2, the steady-state pitch motion consists essen­
tially of an oscillation of frequency wt whose amplitude is proportional to the square of
the initial amplitude of the fast-oscillating flexural motion. For such cases, the amplitude
of the steady-state Ritch motion corresponding to the first bending mode is approximately
equal to 2Kwv~/(J3we) ~ 7.lv~ when 0 ~ We ~ 1. Numerical integration of eqns (1) and
(2) confirmed these results. The resulting bending motion for this case is essentially a
sinusoid as described above. As V,(O) approaches zero, the 0(e 2

) component in eqn (26),
with frequency 2n, and the higher order components, start to affect the very small resulting
motion, which will then consist of a high frequency oscillation with frequency 2n whose
amplitude is modulated by lower frequency higher order components.
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PRIMARY RESONANCE WITH n NEAR j3wc

The motion for this case is analysed by letting

2311

(29)

and the solution to the O(e) differential equations are now obtained as shown in eqns
(30a,b):

The conditions for elimination of secular terms in this case are the same as in eqn (20) and
the solution to the 0(e 2

) differential equations are the same as in eqn (13a) and (13b), with
181 = 0 in those equations.

At the 0(e 3
) level, we also find that one of the conditions for elimination of the secular

terms is obtained as

(31)

Thus, as in the superharmonic resonance with n near J3we/2, Av -+ 0 as t -+ 00, and the
O(e) solution for the bending motion consists only of the particular solution due to the
external excitation.

By expressing the nearness ofn to J3we as

(32)

and by defining a quantity Y8(t2) as

(33)

the conditions for elimination of secular terms in the 0(8 3
) differential equations are

obtained as shown in eqns (34a, b) below:

2J3we d2A8-a,4AB!;, sin 2Y8 - [/83 + a,s!1h, d;tl sin Y8 = 0, (34a)

2J3A8(J3We CT8- d2Y8)/We + ~Al + [a,3+01:4 cos 2Y8]AB!;1

+[(f83+a,s18~d;I)/w.?]coSY8 = 0, (34b)

where

(35a)

(35b)

3
(35c)

For the first mode one obtains a,3~ 1.43 x 10-4, a,4~2.19xlO-4 and a,s~2.92xlO-6

when 0 ~ We ~ I, and a,3 = 1.167 x 10- 4, a,4 = 1.16 x 10-4 and a,s = 1.753 x 10- 6 when
We = 5.

Equations (34a, b) admit the following equihbrium solutions, which correspond to
A8= constant A ABe and Y8 = constant A YBe'
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Fig. 5. Amplitude-frequency pitch response for n near J3we, with We = I (or 0 ~ We ~ I),
W= 22.577, f,. = 15, and several values off ~ (!o+IY.,!?:!o.)/W;.

Equilibrium E 1

sin YOe = 0 cosYOe = ± I, (36a)

(36b)

Equilibrium E 2

I [/03 0(5 ]cos YOe = --A-2/2 + 2--- loq 1 ,
Oe 0(4,,1 (X4

(37a)

(37b)

The pitch amplitude-frequency response curves for the equilibrium solutions E 1 and
E2 given by eqns (36b) and (37b) are shown in Fig. 5 for We = I, W = 22.577 (first bending
mode), Iv = 15 and several values of the parameter I ~ (fo+O(s!;loq)!w;. The stable and
unstable parts of the responses are identified in that figure. Equilibrium E 2 exists only in
the region where the values of IcosYol, determined from eqn (37a), are not greater than
unity. The region where E 2 does not exist is indicated by a dotted line in Fig. 5 when
1= 0.03. Fori = 0.015, for example, E 2 does not exist wheneA oe < 0.16 (which corresponds
to the intersection of one of the curves for equilibrium E) for 1= 0.Ql5 with the E 2 curve
shown in Fig. 5). In Fig. 6 the steady-state amplitude of the pitch response for E 1 and E 2

is shown plotted versus the parameter Iv for I = 0.02 and several values of the frequency
detuning e2(10. The dotted line indicates the region where equilibrium E2 does not exist. As

E2

E 2

O.l_c=-=~

0.2

0.3 ......----------------,
-- stable

unstable

o~--.......,---""T'"----'-r__---1
403010o 20

f
v

Fig. 6. Steady-state pitch amplitude versus f,. for n near J3we, with We = I, W = 22.577 (or
o~ We .;; I),! = 0.02 and several values of 8

2
0'0'



Nonlinear dynamics-II 2313

shown in Fig. 6, the steady-state pitch response is given by equilibrium E I for the smaller
values of Iv. As Iv is increased, one reaches a critical value of Iv above which E) becomes
unstable and the response is then determined by eqn (37b) for equilibrium E 2• Along the
curve marked E 2 the pitch response is insensitive to the excitation parameter Ie that appears
on the right-hand side of eqn (2).

The steady-state pitch amplitude-frequency response characteristics for equilibrium
E I shown in Fig. 5 are essentially the same as those for an undamped Duffing oscillator
with a softening nonlinearity while the steady-state response for equilibrium E2, which
is independent of the excitation parameters appearing in eqn (2), is characteristic of a
parametrically excited Duffing oscillator.

In order to further investigate the effect any bending motion has on pitch, consider the
special case when the excitation distribution E~(s) is such as to yield 10 = 0 and that lo~ is
also nearly zero. In this case, the differential equations for Aoand Yo, obtained from eqns
(34a, b), may be written as follows:

.j3(Air/wc = e2(X4Ai1;1 sin 2yo,

2.j3AoYo/wc = e2Ao[6uo +~Ai+(IX 3+1X4 cos 2Yo)/;d.

(38a)

(38b)

By multiplying eqn (38a) by the expression given by the right-hand side of eqn (38b),
and eqn (38b) by the right-hand side ofeqn (38a), the following integral ofmotion is readily
obtained from the resulting differential equation:

(39)

By solving eqn (39) for cos 2yo, the following differential equation governing the amplitude
Aofor the first order approximation for the pitch motion is readily obtained:

h3( 2)/ 21'2 2 2 [H/Ai- 3(2Uo+Ai/4) J2 1:.. 2 2 2~v'.:J Ao . We = ±e J vIAo 1X4 - 12 - 1X 3 - ±e 1vI AOv' g(Ao).
vI

(40)

The integral of the motion for eqn (40), given by eqn (39), provides the condition
under which energy is exchanged between the bending and pitch motions of the beam when
the only excitation is the termiv cos (Ot) in eqn (1). The nonlinear phenomenon represented
by eqn (40) occurs when g(Ai) ~ 0, and the extremum values of Ao correspond to
g(Ai) = O. Of special interest is the case for which the pitch motion is started with very
small initial conditions 0(0) and £1(0) so that H ~ O. For this case the function g(Ai)
reduces to

(4ta)

where

(4tb)

(4tc)

The quantities Aim I and Aim2 are the roots ofthe polynomial g(Ai). The root Aim I becomes
zero when (Jo = (JOI while the root Aim2 is zero when (Jo = (J02 where
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Fig. 7. Phase plane trajectory associated with eqn (40).

2 (0(4+0(3)f'~1
0"01 = 0"0 (A Om I = 0) = - --6--'

2 (0(4-0(3)f'~1
0"02 = 0"0 (A Om 2 = 0) = 6 .

0.12

(42a)

(42b)

With both 0(3 and 0(4 greater than zero, and 0(4) 0(3, it follows that 0"01 < 0 and 0"02> O.
When B2

0"01 < B2
0"0 < B2

0"02' the function g(Al) is positive and, therefore, the amplitude of
the pitch motion O(t) :::::; BOt(t) grows to a large value which is equal to BAo . As disclosed
byeqn (41c), the maximum value BAomax of the pitch motion in this regionm~f resonance is
independent of the initial conditions in pitch. This is illustrated by the phase plane trajectory
associated with eqn (40); shown in Fig. 7.

The maximum amplitude of the resonant pitch motion can be readily determined by
making use of Fig. 8, for which 0 ::::;; We ::::;; 1. Each straight line corresponding to a particular
value off., in that figure is given by eqn (41c). For a given value off." the upper bound for the
frequency detuning for a resonant motion to occur, B

2
0"02' is determined by the intersection of

the corresponding straight line fil with the B
2

0"0 axis. The lower bound B
2

0"01 for the detuning
B20"0 is determined by the intersection of line fil with the straight line A0

2
ma,

(0"0 = 0"0') = -160"0/(1 +0(3/0(4)' The lower boundary of the resonant region in the space
B2Ao ,B20"0) is indicated by the dashed line in Fig. 8. The region of resonance in the space
(f;,m;20"0) is shown in Fig. 9 for 0::::;; We ::::;; 1. Figure 10 shows the pitch motion obtained by

0.2

0.1

o--L---,.------,r----~"'---::..-____l
- 0.02 - 0.01 o 0.01

E2<1, = _.0- - 1
.J3wo

Fig. 8. (8Ao )2 versus 8 2110 for n near J3wc• with We = 1 and W = 22.577 (or 0,;; We ,;; I).
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Fig. 9. The region of resonance in the (f;, e2
(10 ) parameter space for the first bending mode and

for 0 ~ We ~ 1.

numerical integration of eqns (1) and (2) with v/(O) = v,(O) = 0(0) = 0, 0(0) = 0.05,
We = 0.02, W = 22.373 and E~(s) = 20F(s) (the values of the excitation parameters can be
obtained from those listed in Table 2). The steady-state bending motion is essentially
sinusoidal with amplitude equal to 1v/(w2 -3w;) ~ 0.04, as predicted by eqn (30a) with
A v = O. The motion depicted in the upper part of the figure shows a resonant motion for
which 8

2
(10 = -0.005. For this case, if 0(0) is reduced, the envelope of the pitch motion still

reaches the same peak value 0ma. ~ 0.28, although it takes longer to reach that value. The
lower part of Fig. 10 shows the pitch motion for 8

2
(10 = -0.03, which is a value outside the

region of resonance. Such motion is now dependent on the pitch initial conditions. This is
confirmed by numerical integration of eqns (1) and (2). The maximum amplitude of the
resonant pitch motion shown in the upper part of Fig. 10 corresponds to the point marked
P in Fig. 8. The other points marked in Fig. 8 show the result of the numerical integration
of eqns (1) and (2). These figures clearly disclose the excellent agreement with the results
predicted by the analysis presented in this paper. The half period of the envelope of the
resonant pitch motion shown in Fig. 10 may also be estimated by integrating eqn (40).

SUMMARY

The nonlinear differential equations of motion formulated by the authors (Crespo da
Silva and Zaretzky, 1993) and expanded to contain up to third order polynomial non-
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8 0

-0.16

-0.30
0 19 38 67 78

0.12

0.08

8 0

-0.06

-0.12+------,.----,------,.-__--1
o ~ ~ ~ ~

roc tI (271:) ~ number 0 f orbits

Fig·
2
10. Numerical integ~ation of eqns (I) and (2) for n near fiwe, with We = 0.02 (w = 22.373),

e C2 = 0.1, v/(O) = 0, v,(O) = 0, 8(0) = 0.05, 11(0) = O,/., = 20,10 = 0,/"" = 899.2 andfo., = O.
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linearities have been applied to study the resonant coupled planar flexural-pitching motions
of a beam in circular orbit about a massive central attracting body. The nonlinearities in
the equations are due to nonlinear curvature and inertial effects, coupling between the
bending and pitch motions, and contributions from the gravity gradient moment.

Three types of resonances have been considered. For the superharmonic pitch res­
onance it was found that the first approximation for the pitch response consists of two
harmonic components, with the amplitude of one of the components being affected by the
nonlinearities. For the primary bending resonance it was determined that while the ampli­
tude-frequency response of the bending motion is characteristic of a classical Duffing
oscillator, the pitch component of the response consists ofa low frequency oscillation whose
amplitude is dependent on initial conditions and a higher frequency component whose
amplitude is dependent on the steady-state bending amplitude. For the primary pitch
resonance the pitch response was shown to exhibit characteristics of a Duffing oscillator
with a softening nonlinearity and a parametrically excited Duffing oscillator. It was also
found that if the pitch motion is started with small initial conditions within a certain region
in the space (/;., elue) the pitch motion will grow to a maximum value which is independent
of the pitch initial conditions.
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